
POSTGRES AT HI5

Paul Lindner / Ram Gudavalli

June 12th, 2007

WHAT IS HI5?

• 3rd largest social networking

website worldwide behind

MySpace and Orkut

• Offering Messaging, Friends,

Video, Music, Groups and

more.

• Large international focus

• Top 15 Website (Alexa)

• 7+ Billion Pageviews / month

• 30+ Million Active users

BEGINNINGS OF HI5

• Founded by Ramu Yalamanchi and Akash Garg

• Launched in December 2003

• Reached 1M members by July 2004

• Started as a basic N-tiered Java architecture

– 6 application servers

– 1 Postgres 7.4.x DB server

– Lasted until about 6.5M registered members

CRACKS IN THE FOUNDATION

• DB would lock up under a

burst of write activity

• Inefficient schema design

• Very expensive checkpoints

and vacuums for large

tables

PROGRESSION OF ENLIGHTENMENT

• Database partitioning

– Schema separation across multiple databases

– Provides separation of I/O characteristics by schema

requirements

Schema Users &

Messages

Schema Users Schema Messages

Problem: Tables were starting to get too

large…

DB PARTITIONING (CONT.)

• Table partitioning

– Partition a large table into many smaller tables w/ software

routing of queries

• Friends DB currently has 120 tables across 5 DB servers

– Reduces checkpoint and vacuum times

– Creates smaller indexes for Postgres to manage

– Makes it much easier to shift data around when

performance bottlenecks arise

GENERAL DISTRIBUTED DB ARCHITECTURE

QUERY FRAMEWORK

• Generalized software framework for distributed database

querying and management

– Routing of queries based on key mappings

– Support for Broadcast queries, data aggregation and post-

processing

– Load-balancing support

– Poor-Man’s Replication (Non-transactional)

– DB Lockout and failover

– Maintenance hooks (such as the ability to set a DB to Read-Only

mode and the ability to change DB layout dynamically)

QUERY FRAMEWORK – iBatis

• All Queries are centrally maintained in XML files

– Easy to audit, no suprises

– Easy to optimize / verify (grep -i count *.xml !)

– Maps relational fields to Java Beans

• Extended to support our partitioning

– ctrl:partitionKey="id”

– ctrl:pointCut="GetNextId(userlogin,users_seq,id)”

– ctrl:pointCut="DeleteCache(UserLoginBean,email)”

QUERY FRAMEWORK – Configs

• All DB structure defined in two files

– db.xml (Logical Structure)
• <tablespace name="AuthCluster">

 <Cluster>
 <DBInstance name="authdb_r0”/>
 <DBInstance name="authdb_c0" readOnly="true"/>
 </Cluster>
 <table name="userlogin"/>
</tablespace>

– Torque.properties (DSNs/Pools)
• Torque.dsfactory.authdb_c0.factory=com.friend.db.RecoverableDataSourceFacto

ry
torque.dsfactory.authdb_c0.pool.maxActive=6
torque.dsfactory.authdb_c0.pool.maxIdle=6
torque.dsfactory.authdb_c0.pool.maxWait=600000
torque.dsfactory.authdb_c0.pool.testOnBorrow=true
torque.dsfactory.authdb_c0.pool.validationQuery=SELECT 1
torque.dsfactory.authdb_c0.connection.driver = org.postgresql.Driver
torque.dsfactory.authdb_c0.connection.url=
 jdbc:postgresql://10.100.9.50:5432/friend?loginTimeout=10

USER CLUSTER ARCHITECTURE

A: 1 – 14M B: 14M – 29M C: 29M …

Slony Replication

USER CLUSTER ARCHITECTURE

A: 1 – 14M B: 14M – 29M C: 29M …

Slony Replication

HI5 N-TIER ARCHITECTURE

HTTP request

HTTP response

Load balancers

UserPics Storage

App Servers

Simple Cache Servers

Profile Cache Servers

Graph Servers

Photo Cache Servers

Databases

Jobs Servers

HI5 PRODUCTION DATABASES

Photos

Users

Friends

Big

Replica

Contacts

Ad

Track

Auth + Replica

Profiles

Replica

Messages

 Comments

 Shoutouts

Video

Class-

Mates

Queues

Invites

Music
Profiles

Groups

Misc

HARDWARE - OLD

• Meet the old Moe

• Dual Xeon with

Powervaults

– 4 Sale - Cheap!

• NetApp NFS

• Plus daakman, aldar,

simon, lenny, laddie,

stampy, krustofski,

michellepfeiffer

HARDWARE

• 50+ servers, 8-way Opteron,

4-way Opteron

• NetApp Storage

– Fibre Channel

– iSCSI

HARDWARE - FUTURE

• Phase out dual Xeon

• Phase out Powervaults

• More and more 8-ways

• More Netapp Shelves

• More and more databases

POSTGRESQL OLD

• Lots of 7.4.x versions

• Compiled on each box

• In /usr/local/pgsql

• Application managed

replication

Postgresql Today

• Stock 8.2.4 as an RPM

package

• Managed with cfengine

• Slony 1.2.9 RPM

• Consistent Replication

POSTGRESQL TOMORROW?

• High Availability/Failover

– Steeleye, VCS?

• EnterpriseDB?

• Postgresql 8.3

– HOT – great for update-

oriented tables

– GIN built-in

DBA POSTGRESQL TOOLS

• pgfouine

– Run off our central logging

server

• pgspy

• Custom Scripts

– pg-status – queries all DBs

for sizing

– pg-fsck

• Clean up permissions

• Remove orphan rows

– Idle connection killer

• Hyperic HQ Monitoring

HYPERIC HQ

POSTGRESQL TOOLS FUTURE

• Pgbouncer

– Needed for using 100s of Application Servers

– Looks good for maintenance

• Pgmemcache

– Would allow for transactional invalidation of cache

data, including “by-hand” SQL.

– … If only it could create serialized Java Objects…

LOVE POSTGRES

• Concurrent Index Builds

• Fast Queries (when working set is in memory)

• Consistent logical dumps

• MVCC

• Non-Blocking DDL (add columns without downtime)

• Amazing Community Support

– Mailing lists, freenode, and more

LOVE POSTGRES

• Transactional DDL

– BEGIN TRANSACTION;

ALTER TABLE foo RENAME …

CREATE TABLE foo

COMMIT;

• Used heavily for queue systems

– Writes go to the raw table

– Queue job grabs that table and works on it

LOVE POSTGRES

• Inheritied Tables with table Rules

– CREATE TABLE foo_01 () inherits foo;

(repeat for 02-12)

– CREATE RULE foo_01_r AS ON INSERT TO foo

WHERE (date_part(‘month’, new.ts) = 1

DO INSTEAD

INSERT INTO foo_01(….) VALUES(….)

– Use TRUNCATE to clean out tables

• Used for stats/logging/tracking

• Inheritence allows us to query the entire set

DISLIKE POSTGRES

• Vacuuming

– Takes much too long for very large datasets

• Autovacuuming

– 3000 Transactions per second

– 3000 * 60 * 60 *24 = 259,200,000

– autovacuum_freeze_max_age = 200,000,000

• Checkpoints

– Amount of writes can overflow BBU cache

• MVCC scans/count(*) all that.

WRAPUP

• Hi5 + Postgres + Memcache etc = Alexa #11

• You will hit plateaus as you grow

– Postgres major releases solve some of these

– Otherwise expect to get your hands dirty.

• Looking forward to lots of great new features.

